Given two words (
start and
end), and a dictionary, find all shortest transformation sequence(s) from
start to
end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start =
"hit"
end =
"cog"
dict =
["hot","dot","dog","lot","log"]
Return
[
["hit","hot","dot","dog","cog"],
["hit","hot","lot","log","cog"]
]
Note:
- All words have the same length.
- All words contain only lowercase alphabetic characters.
The solution is quite long and can be divided to several parts:
class Solution {
public:
void calAdj(const string s, unordered_set<string> & dict, unordered_set<string>& adjset){
adjset.clear();
for( int i = 0; i < s.size(); i++){
string tmp(s);
for( char az = 'a'; az <= 'z'; az++){
tmp[i] = az;
if( dict.find(tmp) != dict.end()){ //tmp is in dictionary
adjset.insert(tmp);
}
}
}
}
void pathreverse(unordered_map<string, unordered_set<string>>& pathmap, string start, vector<vector<string>>& pathlist){
vector<string> & lastpath = pathlist[pathlist.size()-1];
lastpath.push_back( start );
vector<string> prepath(lastpath);
int p = 0;
for( auto nstr : pathmap[start] ){
if( p > 0 )//generate new path
pathlist.push_back(prepath);
pathreverse(pathmap, nstr, pathlist);
p++;
}
}
vector< vector<string> > findLadders(string start, string end, unordered_set<string> &dict){
vector< vector<string> > pathlist;
string tmp = start;
start = end;
end = tmp;
int slen = start.size();
int elen = end.size();
if( slen != elen )
return pathlist;
dict.insert(start);
dict.insert(end);
//run bfs
unordered_map<string, unordered_set<string>> pathmap;
unordered_set<string> curset;
curset.insert(start);
dict.erase(start);
unordered_set<string> adjset;
bool find = false;
while( !find && curset.size() > 0 ){
unordered_set<string> preset(curset);
curset.clear();
for( auto pres : preset){
if( pres == end ){//find it
find = true;
pathlist.push_back(vector<string>());
pathreverse(pathmap, end, pathlist);
break;
}
calAdj(pres, dict, adjset);
curset.insert(adjset.begin(),adjset.end());//put in next layer
for( auto nexts : adjset ){
pathmap[nexts].insert(pres); // record its parents
}
}
for( auto vs : curset) // remove visited string
dict.erase(vs);
}
return pathlist;
}
};